If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-50x+25=0
a = 8; b = -50; c = +25;
Δ = b2-4ac
Δ = -502-4·8·25
Δ = 1700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1700}=\sqrt{100*17}=\sqrt{100}*\sqrt{17}=10\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{17}}{2*8}=\frac{50-10\sqrt{17}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{17}}{2*8}=\frac{50+10\sqrt{17}}{16} $
| 3(3x+99)=351 | | 0.23^24–7.2=t | | T=0.23s–7.2 | | 16x-64.5=11x-191.5 | | 14x-17.5=14x-192.5 | | 13x+38.5=23x+246.5 | | 5x5=0 | | 19x-88.5=12x+82.5 | | 2f=f(f) | | 2f=(f | | B²+289-34b=169 | | B2+289-34b=169 | | B^2+289-34b=169 | | 5(y-3)=2(4y+7)-2 | | Y^2-6y-475=0 | | 16/7=x | | x=x+-26 | | 0.2x+0.44=1.3 | | 12x-98.5=11x-45.5 | | 19x+39.5=23x+210.5 | | 15x+21.5=19x+291.5 | | R=6t+7 | | -27.8f-56.7=f+677.7 | | 346=2x+2(x+67)=4x=134 | | 17x-45.5=21x-192.5 | | 6x+26=5x+28 | | 18x-55.5=22x+178.5 | | 16.2w+8.9=w-346.78 | | 16x+38.5=14x+118.5 | | 13.3z+4.2=z-459.51 | | 2.4n+7.3=n-28.68 | | 3+x=81 |